FEYNMAN PROPAGATOR FOR FERMIONS

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 6 January 2024.

The Feynman propagator for a virtual fermion (electron or positron) is derived in Klauber's Chapter 4, and is, in momentum space

$$S_F(p) = \frac{\not p + m}{p^2 - m^2 + i\varepsilon} \tag{1}$$

Here, p is the 4-momentum of the fermion and m is its mass. The ε is an infinitesimal quantity. The slash notation is shorthand for

$$p \equiv p_{\mu} \gamma^{\mu} \tag{2}$$

where γ^{μ} are the 4 × 4 gamma matrices. Thus $S_F(p)$ in 1 is actually a 4 × 4 matrix equation, so to be completely accurate, we should write it as

$$S_F(p) = \frac{p + mI}{p^2 - m^2 + i\varepsilon}$$

where I is the 4×4 identity matrix.

We can write this in an equivalent form as follows. First we work out

$$p^2 = p_\mu \gamma^\mu p_\nu \gamma^\nu \tag{3}$$

$$= \gamma^{\mu} \gamma^{\nu} p_{\mu} p_{\nu} \tag{4}$$

$$= \frac{1}{2} \left(\gamma^{\mu} \gamma^{\nu} p_{\mu} p_{\nu} + \gamma^{\nu} \gamma^{\mu} p_{\nu} p_{\mu} \right) \tag{5}$$

$$= \frac{1}{2} \left(\gamma^{\mu} \gamma^{\nu} p_{\mu} p_{\nu} + \gamma^{\nu} \gamma^{\mu} p_{\mu} p_{\nu} \right) \tag{6}$$

$$= \frac{1}{2} \{ \gamma^{\mu}, \gamma^{\nu} \} p_{\mu} p_{\nu} \tag{7}$$

where $\{\gamma^{\mu}, \gamma^{\nu}\}$ is the anticommutator of the two gamma matrices. In this derivation, note that p_{μ} is just a number so it commutes with everything, while the γ^{μ} are 4×4 matrices.

We've seen earlier that

$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}I\tag{8}$$

where $g^{\mu\nu}$ is the usual metric tensor from special relativity, and I is the 4×4 identity matrix. From 7 we have

$$p^{2} = \frac{1}{2} (2g^{\mu\nu}I) p_{\mu}p_{\nu} \tag{9}$$

$$=g^{\mu\nu}p_{\mu}p_{\nu}I\tag{10}$$

$$= p^2 I \tag{11}$$

We can therefore write 1 as

$$S_F(p) = (\not p + mI) \left[\left(p^2 - m^2 + i\varepsilon \right) I \right]^{-1} \tag{12}$$

$$= (\not p + mI) \left(\not p^2 - m^2 I + i\varepsilon I \right)^{-1} \tag{13}$$

The second factor contains a difference of squares, but it is the difference of squares of matrix objects, so we should check that the usual algebraic relation for factoring a difference of squares applies also to a matrix relation. We have

$$(\not p - mI) (\not p + mI) = (p_{\mu}\gamma^{\mu} - mI) (p_{\nu}\gamma^{\nu} + mI)$$

$$(14)$$

$$=p_{\mu}\gamma^{\mu}p_{\nu}\gamma^{\nu}+p_{\mu}\gamma^{\mu}mI-mIp_{\nu}\gamma^{\nu}-m^{2}I^{2} \hspace{0.5cm} (15)$$

The identity matrix I commutes with everything, $I^2 = I$, and since μ and ν are dummy summation indices, the middle two terms cancel, and we're left with

$$(\not p - mI) (\not p + mI) = p_{\mu} \gamma^{\mu} p_{\nu} \gamma^{\nu} - m^2 I \tag{16}$$

$$= p^2 - m^2 I \tag{17}$$

Thus the factoring relation works for this matrix equation as well. [It's worth noting that this does *not* work if the two matrices in each factor don't commute.]

Returning to 13, we can write the second factor as (disregarding the infinitesimal)

$$(p^2 - m^2 I)^{-1} = [(p - mI)(p + mI)]^{-1}$$
 (18)

For any two square invertible matrices A and B, we have

$$(AB)^{-1} = B^{-1}A^{-1} (19)$$

With

$$A = (\not p - mI)$$

$$B = (\not p + mI)$$
(20)

we have

$$S_F(p) = (\not p + mI) (\not p + mI)^{-1} (\not p - mI)^{-1}$$
(21)

$$= \left(p - mI \right)^{-1} \tag{22}$$

Klauber writes this in Chapter 12 onwards (dropping the explicity I): as

$$S_F(p) = \frac{1}{\not p - m + i\varepsilon} \tag{23}$$

It must be remembered that this is actually a matrix equation, so the quantity in the denominator is actually a matrix inverse.

Klauber also replaces m (the experimentally measured mass) with m_0 (the 'bare' mass, which isn't experimentally measurable).